
Machine-learned atomic cluster expansion
potentials for fast and quantum-accurate thermal
simulations of wurtzite AlN

Cite as: J. Appl. Phys. 135, 085105 (2024); doi: 10.1063/5.0188905

View Online Export Citation CrossMark
Submitted: 24 November 2023 · Accepted: 29 January 2024 ·
Published Online: 22 February 2024

Guang Yang,1 Yuan-Bin Liu,2 Lei Yang,1 and Bing-Yang Cao1,a)

AFFILIATIONS

1Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics,

Tsinghua University, Beijing 100084, China
2Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QR, United Kingdom

Note: This paper is part of the special topic, Machine Learning for Thermal Transport.
a)Author to whom correspondence should be addressed: caoby@mail.tsinghua.edu.cn

ABSTRACT

Thermal transport in wurtzite aluminum nitride (w-AlN) significantly affects the performance and reliability of corresponding electronic
devices, particularly when lattice strains inevitably impact the thermal properties of w-AlN in practical applications. To accurately model
the thermal properties of w-AlN with high efficiency, we develop a machine learning interatomic potential based on the atomic cluster
expansion (ACE) framework. The predictive power of the ACE potential against density functional theory (DFT) is demonstrated across a
broad range of properties of w-AlN, including ground-state lattice parameters, specific heat capacity, coefficients of thermal expansion, bulk
modulus, and harmonic phonon dispersions. Validation of lattice thermal conductivity is further carried out by comparing the ACE-pre-
dicted values to the DFT calculations and experiments, exhibiting the overall capability of our ACE potential in sufficiently describing
anharmonic phonon interactions. As a practical application, we perform a lattice dynamics analysis using the potential to unravel the effects
of biaxial strains on thermal conductivity and phonon properties of w-AlN, which is identified as a significant tuning factor for near-junc-
tion thermal design of w-AlN-based electronics.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0188905

I. INTRODUCTION

Wurtzite aluminum nitride (w-AlN) emerges as a promising
semiconductor, distinguished by various exceptional characteristics.
These include an ultrawide bandgap1–3 (∼6.1 eV), a large critical
electric field1,3 (∼15 MV/cm), a high sound velocity4 (∼11 km/s),
large piezoelectric coefficients,5 a relatively high thermal conductiv-
ity6,7 (κ � 300 W/m K), and a lattice similar to other semiconduc-
tors such as w-GaN. The large critical electric field stemming from
the ultrawide bandgap results in Baliga’s figure of merit (FOM) and
Johnson’s FOM of w-AlN significantly surpassing those of w-GaN or
β-Ga2O3,

1,3 thereby establishing w-AlN as a remarkable candidate
for novel high-power or radio frequency (RF) electronics.8,9

Meanwhile, the ultrawide bandgap of w-AlN facilitates developments
in deep-ultraviolet photonics.3,8,10,11 The high sound velocity and
piezoelectric performance render w-AlN suitable for fabricating

microelectromechanical system (MEMS)-based resonators and filters,
which are extensively applied in 5G communications.12–15 In addi-
tion, the thermal conductivity of w-AlN is considered satisfactory;
hence, w-AlN sometimes serves as high-κ substrates for high-power
devices to improve the heat dissipation performance.9,16,17 As
depicted in Fig. 1, the bandgap and thermal conductivity of w-AlN
are compared to other representative materials,2 further exhibiting
the significant promise of w-AlN.

Though the inherent characteristics of w-AlN are excellent,
further studies on its properties remain necessary for developing
next-generation electronics, especially in the aspects of (i) clarifying
how the complex environment affects the physical properties,
(ii) tuning the physical properties on demand, and (iii) analyzing
the growth processes. One specific issue of interest pertains to the
effects of lattice strains on the thermal properties of w-AlN. Since
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w-AlN is extensively used as the nucleation layer within the GaN
high electron mobility transistors (HEMTs) to buffer lattice mis-
match between w-GaN epilayers and substrates,22–25 the residual
stress within AlN is inevitable. However, the correlations between
lattice strains with the thermal conductivity and phonon bands of
w-AlN remain vague, which may affect the heat dissipation and
reliability of corresponding devices.26,27

In addition to experimental approaches, atomistic simulations
act as another avenue for gaining insights into the physical properties
of novel materials,28 which is traditionally represented by two tech-
niques,29 i.e., the first-principle calculations based on density func-
tional theory (DFT) and the molecular dynamics (MD) simulations
based on empirical potentials. Nevertheless, high computational cost
limits the DFT methods for modeling transport properties, while the
MD simulations based on simple empirical potentials are less accu-
rate than DFT.30 For w-AlN, several empirical potentials have been
proposed, including the Stillinger–Weber (S–W),31 Tersoff,32

Vashishta,33 and COMB334 models. However, each empirical poten-
tial generates divergent lattice parameters or phonon dispersions
from those of DFT.33–35 When predicting thermal conductivity, it is
fundamental to accurately describe both harmonic and anharmonic
interactions of phonons.36–38 This places a heightened demand on
the accuracy of interatomic potentials for w-AlN.

In recent years, machine learning (ML) interatomic potentials
have attracted significant attention by effectively balancing compu-
tational efficiency with accuracy. A wealth of literature has shown
that a well-built ML potential trained with the DFT reference data
can provide an unbiased representation of potential energy surfaces

and simultaneously exhibit strong transferability.36,39,40 More
importantly, the linear behavior in the computational cost of ML
potentials enables them with much higher efficiency and scalability
than DFT methods. Until now, several ML potential models have
been proposed, such as the neural network potential (NNP),41,42

Gaussian approximation potential (GAP),40,43,44 spectral neighbor
analysis potential (SNAP),45,46 deep potential (DP),47,48 moment
tensor potential (MTP),49,50 atomic cluster expansion (ACE) poten-
tial,51,52 neural equivariant interatomic potential (NequIP),53

Allegro,54 and MACE.55,56 The ACE potential is one of the most
computationally efficient and quantum-accurate models available52

and is also suitable for performing large-scale simulations on CPU
platforms. Hence, ACE is chosen in this work.

Here, we introduce a machine-learned ACE potential51,52,57

for w-AlN, aiming to facilitate the atomistic simulations of its
thermal properties and gain insights into how tuning factors (such
as lattice strains) influencing the phonon pictures. The remainder
of this paper is organized as follows. In Sec. II, we concisely intro-
duce the ACE methodology and the construction of the training
database for w-AlN. In Sec. III, we comprehensively demonstrate
the accuracy of our ACE potential in predicting various thermal
and mechanical properties of w-AlN by comparison with either
DFT calculations or experiments. Then, our ACE potential is
applied to unravel the correlations between thermal conductivities
and biaxial strains of w-AlN. Essential conclusions of this study are
presented in Sec. IV.

II. METHODS

A. Atomic cluster expansion framework

In line with other common ML potentials, the ACE model
also expresses the total energy of a given system as the sum of site
energies,

E ¼ P
i
εi, (1)

in which each εi depends on its local atomic environment within a
given cutoff radius rcut. Different from other many two-, three-,
and many-body descriptors that are not strictly complete, the ACE
framework provides an efficient representation of local atomic envi-
ronments by means of a complete linear basis of body-ordered
symmetric polynomials.51,52,57

Specifically, atomic energy contribution εi in the ACE model
is represented as

εi ¼ F
�

w(1)
i , . . . , w

(p)
i

�
, (2)

where F is a generalized nonlinear function to be supplied and w
(p)
i

is the fundamental building block of ACE, which is expanded by
body-ordered functions within the set of neighbors for each atom i,

w
(p)
i ¼ P

znlm
~c(p)

ziznlmAiznlm: (3)

~c(p)
ziznlm denotes expansion coefficients and vectors z, n, l, and m

contain atomic species, indices for radial functions, and indices for

FIG. 1. Room temperature thermal conductivities of different materials vs their
electronic bandgaps, including amorphous materials (e.g., a-Si, a-Ga2O3), poly-
crystals (poly-Si), metals (Cu), and nonmetallic crystals (e.g., w-AlN, w-GaN).
For the data, refer to the literature.2,3,18–21 This plot reveals that w-AlN lies in
the range of promising comprehensive performance (high thermal conductivity
and ultrawide bandgap). Note that the average thermal conductivities are
chosen for anisotropic materials (e.g., β-Ga2O3, r-TiO2).
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spherical harmonics, respectively. The permutation-invariant
many-body basis functions Aiznlm are represented as

Aiznlm ¼ Qv
t¼1

Aiztnt ltmt , (4)

where the order of the product v determines the body order of a
basis function. Meanwhile, the atomic base Aiztnt ltmt is given as

Aiztnt ltmt ¼
P

j
δzzj fzizjnlm(rij), (5)

in which rij is the relative position of neighbor atoms, and the one-
particle basis fzizjnlm consists of spherical harmonics functions g

zizj

nl
and radial functions Y

zizj

lm ,

fzizjnlm ¼ g
zizj

nl Y
zizj

lm : (6)

It is noteworthy that the expansion coefficients ~c(p)
ziznlm in

Eq. (3) cannot be directly used for model fitting because the many-
body basis functions A do not satisfy rotational symmetries. By
utilizing generalized Clebsch–Gordan coefficients to couple the
elements of the basis function A, an invariant basis function B is
obtained, B ¼ CA. Consequently, a linear model invariant to trans-
lation, rotation, and permutation of like atoms can be written for
the site energy of ACE,

wi ¼ cTB: (7)

The coefficients c are free model parameters that can be opti-
mized during fitting. Further information about the ACE architec-
ture can be found in the literature.51,52,57 In this work, we employ
the software package Pacemaker58 for the parametrization of the
ACE potential. The final ACE model associated with the detailed
hyperparameters is freely available in the supplementary material.

B. Construction of the training database

Structures in the training database are obtained from MD tra-
jectories. Here, the empirical S-W potential31 is adopted to carry
out the MD simulations. This approach allows for sampling over
extended time scales (∼ns) to ensure structural diversity, while it
bypasses the computationally intensive ab initio MD and makes
the sampling more efficient. In detail, the initial structure consists
of a 3 × 3 × 3 supercell containing 108 atoms. The cell is then
expanded or compressed with a scaling factor ranging from 0.95 to
1.05 on each lattice constant. Next, a series of MD simulations for
each cell are performed with the canonical (NVT) ensemble at tem-
peratures of 100, 500, and 1000 K. For each temperature, a 1-ns tra-
jectory is produced, from which structures are sampled at
uncorrelated intervals of 150 ps. Finally, a total of 13 608 local
atomic environments are collected from all 21 MD trajectories.

All generated structures are subsequently subjected to single-
point DFT calculations to obtain well-converged reference energies
and forces for training. The DFT calculations are performed with
the Vienna ab initio simulation package (VASP).59 Exchange and
correlation are treated by using the PBEsol functional60 with a

projector-augmented wave method.61 Moreover, we adopt Gaussian
smearing of 0.05 eV width to electronic levels, a 600-eV cutoff for
plane wave expansions, and a maximum spacing of 0.2 Å−1 for
meshing the reciprocal space. The total energy is attained with a
convergence criterion of less than 10−6 eV in the self-consistent
electronic iterations.

III. RESULTS AND DISCUSSION

A. Performance of the ACE potential for wurtzite AlN

The accuracy of our ACE potential is validated through a com-
parison with DFT-predicted energies and forces. The training and
testing datasets comprise 36 612 and 4212 atomistic force compo-
nents, respectively. In Fig. 2, we present a comparison of the total
energies and atomic forces predicted by our potential with those
derived from DFT. Notably, our ACE potential effectively repro-
duces the total energies, showcasing a remarkably low
root-mean-squared error (RMSE) of 0.13 meV/atom for the testing
datasets. Furthermore, the interatomic forces in the testing datasets
are accurately predicted, with a relatively low RMSE of 5.01 meV/Å.
The accuracy of both energy and force predictions achieved with
our ACE potential is comparable to those of other reported
works,40,43,52,62,63 which demonstrates that our ACE potential
serves as a robust representative of the DFT potential energy
surface.

Then, we assess the capability of our ACE potential to model
the physical properties of w-AlN. Our evaluation begins by employ-
ing the ACE to predict lattice parameters, a fundamental property
that significantly influences various intrinsic characteristics of a
material. The lattice parameters produced by our ACE potential are
as follows: a ¼ b ¼ 3:115 58 Å, c ¼ 4:985 13 Å, and γ ¼ 120�.
These values are in excellent agreement with both our DFT calcula-
tions and experimental results64 (Table I). For comparison, lattice
parameters are also predicted using the S-W potential31 here as
well as using the Tersoff potential elsewhere.35 However, it is note-
worthy that the relative errors in these predictions are considerably
larger than those obtained with ACE.

The ACE potential is subsequently employed to predict the
volumetric specific heat capacity (CV), coefficients of thermal
expansion, and the bulk modulus of w-AlN. CV is calculated using
the Phonopy package65–67. Figure 3(a) summarizes the CV obtained
from our ACE potential, the DFT calculations, and the experimen-
tal measurements.68 Obviously, the data generated by our ACE
potential exhibit strong agreement with both DFT and
experiments.

Thermal expansion of w-AlN holds significant importance in
practical applications, particularly when w-AlN is utilized as transi-
tion layers in III-V electronics, such as GaN HEMTs.22,23,25 This
property determines heteroepitaxial strains arising from the
thermal mismatches during growth processes.22 The coefficient of
thermal expansion (CTE, denoted by αE) is defined as

αE ¼ 1
VT

@VT

@T
, (8)

where V denotes the volume of the AlN unit cell and T represents
the temperature. The CTEs are calculated under the quasi-
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harmonic approximation65 (QHA) implemented with Phonopy. As
shown in Fig. 3(b), the ACE potential quantitatively reproduces the
thermal expansion determined by DFT calculations. Both ACE and
DFT predict that the CTEs are strongly dependent on temperatures
between 0 and 1000 K. It is evident that as the temperature
increases, the CTEs exhibit rapid growth up to ∼300 K, after which
the slopes decrease at higher temperatures.

Moreover, a mechanical property, namely, the bulk modulus
(BT) of w-AlN, is also determined by the ACE potential. As
shown in Fig. 3(c), the ACE potential quantitatively reproduces
the BT as DFT calculations. Both ACE and DFT predict a subtle
decrease in the modulus as the temperature increases from 0 to

1000 K. In summary, it is obvious that our ACE potential is
capable of accurately describing both thermal and mechanical
properties.

The prediction of the phonon dispersions of a material is
another crucial metric for the quality of a potential to describe
lattice dynamics. We first calculate the second-order harmonic and
third-order anharmonic interatomic force constants (IFCs) through
the finite displacement method.69 By combining the Phonopy
package with the second-order IFCs calculated from our ACE and
DFT, the phonon dispersions of w-AlN at 0 K are determined, as
illustrated in Fig. 3(d). As a characteristic of the ionic crystal, the
splitting of LO–TO phonons at the Γ-point is observed, which is
attributed to the long-range Coulomb interactions.36 Since our
ACE model does not encompass the Coulomb interactions, we have
incorporated the non-analytical correction26 into the dynamical
matrix to resolve the splitting of LO–TO phonons at the Γ point.
Our results show that the ACE model accurately predicts the
phonon frequencies at almost of all high-symmetry points and
accurately captures the dispersion behavior of each phonon branch.
Meanwhile, the phonon density of states (DOSs) calculated by ACE
is almost identical to the DFT results.

In fact, although the absence of Coulomb terms introduces
some errors in force calculations, it will be shown later that the
accuracy of our potential remains sufficiently high to yield thermal
conductivity predictions. If the long-range Coulomb interactions

FIG. 2. Comparison of DFT-computed and ACE-predicted (a) total energies and (b) interatomic forces for w-AlN. Here, “Error” represents the absolute error.

TABLE I. Comparison of the lattice parameters of w-AlN determined by different
methods.

Method

Lattice parameter Max relative
error against

Expt. (%)a/b(Å) c(Å) γ (deg)

ACE potential relaxation 3.115 58 4.981 53 120 0.116
SW potential31 relaxation 3.080 02 5.029 65 120 1.027
DFT relaxation (PBEsol) 3.112 88 4.982 47 120 0.032
Experiment64 3.111 97 4.980 89 120 0
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become crucial for other calculations, we will properly incorporate
the Coulomb interactions with fixed partial charges before fitting
the ACE model. This adjustment will automatically resolve the LO–
TO splitting issue and improve the accuracy of force calculations.36

Similar treatments for GaN can be found in the literature.43

B. Thermal conductivity of wurtzite AlN

Herein, we utilize the second- and third-order IFCs to predict
the thermal conductivity (κ) of w-AlN. The Wigner transport
equation (WTE)70–72 is solved by the direct solution in
Phono3py66,73,74 package, with a 25 × 25 × 25 mesh for sampling

the first Brillouin zone over temperatures within 100–600 K. Due to
its wurtzite lattice, it is expected that the thermal conductivities of
w-AlN exhibit approximate isotropy along both in-plane and cross-
plane directions.27

We also conduct ShengBTE75 calculations including the
four-phonon processes (4ph)76 for comparison with the WTE.
Since the computational cost is extremely huge with 4ph involved,
we resort to the sampling-accelerated method77 with the settings
“num_sample_process_4ph = 1E5” and “num_sample_process_4ph_
phase_space = 1E5.” Meanwhile, a 16 × 16 × 16 mesh of the first
Brillouin zone is set, and the value of “scalebroad” is taken as 0.1.
The cutoff distances of the third- and fourth-order IFCs are selected

FIG. 3. Temperature-dependent (a) specific heat capacity, (b) thermal expansion coefficients, and (c) bulk modulus of w-AlN. (d) Phonon dispersion and phonon density of
states (DOS) of w-AlN at 0 K predicted by DFT and the ACE potential.
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to be the seventh nearest and the second nearest atom, respectively.
These mentioned parameters are large enough to make it converge
to the rigorous calculations,75–78 though resulting in a negligible
uncertainty due to random sampling.

As illustrated in Fig. 4(a), the ACE potential calculates the
thermal conductivities of w-AlN along both in-plane and cross-
plane directions. Though the physical pictures behind WTE and
4ph-scattering are different, their predictions are close indeed. The
thermal conductivity predicted by ACE shows overall good agree-
ments with our DFT calculations and experimental measurements
(based on the three-sensor 2ω method proposed in our recent
works).7,22,80 Besides, the ACE-predicted values approximate the
literature experiments2,79 above room temperature as well, though
the ACE overestimates thermal conductivities beneath 250 K owing
to neglecting the phonon-defect scattering. Several theoretical and
experimental studies27,79,81,82 have discussed this issue, and
researchers generally attribute the discrepancy between theoretical
predictions and cryogenic experiments to the impacts of phonon-
defect (e.g., point defects, dislocations, grain boundaries) scattering.
Since the phonon-defect scattering rates are independent of tem-
perature in principle,27 they will dominate the phonon transport at
low temperatures where the anharmonicity (normal and Umklapp
processes) is weak.

The literature experiments depicted here are all based on an
isotropic assumption, whereas our three-sensor 2ω method enables
the direct derivation of thermal conductivities along different direc-
tions.7 The brief introduction on the three-sensor 2ω method can
be found in the supplementary material.

Furthermore, we conduct an equilibrium molecular dynamics
(EMD) simulation based on the ACE potential to predict the
w-AlN thermal conductivity. The large quantum effects at low tem-
peratures significantly influence the MD-calculated thermal
conductivity,28,81,83–86 since the Debye temperature of w-AlN is
quite high (ΘD � 1000 K).87 Hence, we only calculate the thermal
conductivity at 1100 K, where the quantum effects could be reason-
ably neglected.84 A bulk w-AlN system containing 4000 atoms is
set as the initial configuration for EMD simulations conducted in
the LAMMPS.88 The length of each crystallographic direction
reaching 10 unit cells achieves convergence for calculating the
thermal conductivity of w-AlN.89,90

Periodic boundary conditions are applied to all three direc-
tions to mimic the infinite size of structures. A total of 4.5 ns EMD
simulations based on the trained ACE potential are performed with
a time step of 1 fs. After equilibrating the system in the isothermal–
isobaric (NPT) ensemble for 500 ps, the system is switched to the
microcanonical (NVE) ensemble for 4 ns to collect heat flux data.
To mitigate the impacts of statistical uncertainties and errors, we
conduct ten independent EMD simulations with different initial
velocity distributions to obtain the averaged thermal conductivities
at 1100 K. The thermal conductivity here is considered isotropic
along the in-plane directions, so we average the thermal conductiv-
ity values along the x, y directions as the final in-plane thermal
conductivity. The EMD results are κMD

in ¼ 51:0 + 5:8 W/m K and
κMD

cr ¼ 48:4 + 6:3 W/m K, which are comparable to those of BTE
calculations, as discussed in the supplementary material. On the
AMD EPYCTM 7452 CPU platform, an average calculation effi-
ciency of the ACE-based EMD simulations reaches 0.26 ms/

MD-step/atom when calculating on a single thread (using GCC
9.1.0 compiler and LAMMPS 23-Jun-2022-Update3), which mani-
fests the capability of the ACE potential for large-scale molecular
dynamics.52

More detailed phonon transport characteristics of w-AlN are
also calculated from the ACE potential by Phono3py. The accumu-
lated thermal conductivity as a function of phonon frequency at
300 K is presented in Fig. 4(b), which further verifies the accuracy
of the ACE potential compared to the DFT results. Obviously, the
thermal conductivity is primarily contributed by acoustic phonon
branches with frequencies below the “phonon bandgap,” whose
contributions exceed 98.5% for both in- and cross-plane values. In
addition, we also calculate the accumulated thermal conductivity as
a function of phonon mean free path (MFP) based on the single-
mode relaxation time approximation, as detailed in the
supplementary material. The discussions on MFP imply that the
size effect of w-AlN film’s thermal conductivity is crucial for practi-
cal applications, which limits the heat dissipation performance of
the corresponding electronic devices.22,23,25,91,92

C. Influence of biaxial strain on thermal properties of
wurtzite AlN

As discussed in Sec. I, there is an inevitable residual strain
(stress) inside w-AlN in its practical applications, especially when
w-AlN serves as the transition layer for a GaN HEMT by forming
the GaN/AlN/Substrate heterojunction. Owing to the mismatches
in lattice and thermal expansion between three materials, residual
strain and lattice defects inside the w-AlN are general significant.
Therefore, based on the trained ACE potential of w-AlN, we
proceed to study the strain effects on lattice thermal conductivity of
w-AlN.

In practical applications of transition layers, two kinds of strain
exist within w-AlN, i.e., in-plane biaxial strain perpendicular to the
polarization axis and cross-plane uniaxial strain along the polariza-
tion axis. Considering that in-plane stress is much more common
than cross-plane stress in heterojunctions owing to the in-plane
lattice mismatch26 and the uniaxial strain hardly affects thermal con-
ductivity,93 we only investigate the biaxial strain effects in this work.
Here, the strain is applied by modifying the lattice constants of the
structure, and then the structure is relaxed with the in-plane lattice
constant a (or b) being settled. The biaxial strain is expressed by rela-
tive variation of the in-plane lattice constant,

σa ¼ a � a0

a0
: (9)

Under in-plane biaxial strain states, the other lattice constant c will
also vary to achieve minimal stress, and finally an optimized struc-
ture in the cross-plane direction is formed. Also, the changes of
crystal symmetries are not detected under strain states in this work,
i.e., AlN maintains a wurtzite structure with the space group P63/
mmc. The introduction of lattice strains and the structure optimiza-
tion are performed using the atomic simulation environment
(ASE)94 package. Consequently, phonon properties as well as the
thermal conductivity of w-AlN exhibit continuous changes under
biaxial strain σa states, ranging from −4% to 4%.
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From a classical and intuitional perspective, compressive
strain is expected to increase the thermal conductivity by augment-
ing the elasticity modulus and acoustic velocity.26 The results,
shown in Fig. 5, reveal that both in- and cross-plane thermal con-
ductivity of w-AlN decrease remarkably under the +4% biaxial
strain state (tensile) at room temperature, with the average thermal
conductivity decreasing by 40%. Conversely, under the −4%
biaxial strain state (compressive), the average thermal conductivity

increases by 30%. In the temperature range of 200–400 K, lattice
thermal conductivity decreases significantly; however, the decrease/
increase trend depending on biaxial strain is nearly constant at dif-
ferent temperatures [Fig. 5(b)], implying that the influences of
lattice strain and temperature on thermal conductivity should be
independent. Meanwhile, the temperature dependence of thermal
conductivity follows a similar trend under different biaxial strain
states.

FIG. 4. (a) Comparison of w-AlN’s thermal conductivities along the in-plane and cross-plane directions between the ACE model, DFT calculations, and experiments. Note
that all the Phono3py calculations here have enabled the Wigner transport theory,70–72 while the ShengBTE calculations have included four-phonon effects.76 The literature
experiments2,79 depicted here are all based on an isotropic assumption, while experiments based on our three-sensor 2ω method7 are capable of deriving the anisotropic
thermal conductivity directly. (b) Comparison of accumulated thermal conductivity of w-AlN between the ACE model and DFT calculations, as a function of phonon fre-
quency at 300 K along the in-plane and cross-plane directions, calculated by Phono3py.
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Then, we investigate the changes of phonon properties under
different strain states, to elucidate the correlation with their
thermal conductivity. Based on the phonon BTE, lattice thermal
conductivity can be expressed as26

καβ
L ¼ P

q,ω
Cq,ωvαq,ωvβq,ωτq,ω, (10)

in which q and ω denote the phonon branch and the frequency of a
specific phonon mode, respectively. Thus, lattice thermal conductivity
primarily depends on the three variables, namely, volumetric specific
heat Cq,ω, group velocity vαq,ω (vβq,ω), and relaxation time τq,ω of each
phonon mode. Note that all these parameters are determined by the
phonon dispersions, as illustrated in the supplementary material.

Figures 6(a) and 6(b) illustrate the phonon harmonic proper-
ties under different strain states, while Figs. 6(c) and 6(d) depict
the anharmonic features. Volumetric specific heat of phonon
modes reflects the energy level of a crystal system, varying with the
phonon dispersions and volume of the unit cell correspondingly.
As shown in Fig. 6(a), slight decreases of mode specific heat with
tensile biaxial strains occur, implying a positive correlation to the
change of thermal conductivity. In Fig. 6(b), phonon group velocity
gradually increases from the tensile to compressive strain states,
which is consistent with the increased thermal conductivity.
Figure 6(c) shows that phonon relaxation time decreases under the

tensile strain state and increases under the compressive strain state,
which is consistent with the thermal conductivity variations as
well. According to the results of phonon DOSs in the
supplementary material, the phonon bandgaps are 0.65, 1.35, and
2.40 THz under tensile, free, and compressive strains, respectively.
This determines the variations of relaxation time in principle, since
a smaller (larger) phonon bandgap will enable more (less) available
three-phonon scattering channels, thereby enhancing (suppressing)
the three-phonon anharmonic scattering processes.26,95

The Grüneisen parameter, an indicator of lattice anharmonic-
ity,26,27 is further analyzed here to back up the influences of strains
on anharmonic scattering processes [Fig. 6(d)]. Obvious increases
(decreases) in the Grüneisen parameters of acoustic phonon
branches are observed under the tensile (compressive) strain state,
in line with the variations of phonon bandgaps. More discussions
on how and why lattice strains affect the phonon anharmonicity
can be found in the supplementary material. Consequently, the
consistent variations in mode specific heat, group velocity, relaxa-
tion time, and anharmonicity lead to significant changes in the
lattice thermal conductivity26 of w-AlN under different strain
states.

The highlighted impacts of lattice strains on phonon proper-
ties should be favorable for tuning the heat dissipation performance
of corresponding w-AlN-based electronic devices. By carefully engi-
neering the residual strains within heteroepitaxial structures via

FIG. 5. The effects of biaxial strains on thermal conductivities of w-AlN. (a) The dependence between thermal conductivities and the biaxial strains at 200−400 K, and (b)
the variation of relative thermal conductivities at each temperature, i.e., the strained κstrain divided by the strain-less κ0 at the same temperature.
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annealing96,97 or selecting substrates with specific lattice struc-
tures,26,98 it is viable to optimize the lattice thermal properties on
demand, facilitating near-junction thermal optimization of semi-
conductor devices.91,99

IV. CONCLUSIONS

We have developed an ACE potential based on machine learn-
ing for atomistic simulations of monocrystalline w-AlN. Our ACE
potential exhibits remarkable accuracy in reproducing the DFT
potential energy surface of w-AlN, achieving an energy RMSE of
∼0.13 meV/atom and a force RMSE of ∼5.01 meV/Å for both Al
and N atoms. Subsequently, the predictive power of ACE is demon-
strated across a variety of properties of w-AlN, including ground-
state lattice parameters, specific heat capacity, coefficients of
thermal expansion, bulk modulus, phonon dispersions, and
thermal conductivity. All these results show excellent agreement
with the DFT calculations and experimental results, demonstrating
that the ACE model sufficiently describes both harmonic and
anharmonic phonon properties.

The lattice strain is proven as a significant tuning factor for
thermal design of heteroepitaxial electronic devices. As a practical
application of the ACE potential, we perform lattice dynamics sim-
ulations to unravel the effects of biaxial strains on thermal conduc-
tivity of w-AlN. The results indicate that a 4% biaxial tensile

(compressive) strain approximately causes a 40% decrease (30%
increase) in the thermal conductivity of w-AlN, while the influ-
ences of lattice strain and temperature on thermal conductivity
appear to be independent. The investigations into phonon pictures
under different strains reveal that the consistent variations in
phonon mode heat capacity, group velocities, and relaxation times
predominantly contribute to the variation of thermal conductivity,
while all these factors stem from the variations in phonon band
structures. Thus, it is feasible to facilitate near-junction thermal
optimization of devices via strain engineering on phonon bands.
The findings here are beneficial for the development of next-
generation electronic devices.

SUPPLEMENTARY MATERIAL

See the supplementary material for brief introductions to the
experiments, additional discussions on phonon properties, and the
ACE potential files developed for simulations in both LAMMPS
and ASE calculators.
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